Federal University of the Amazons, Brazil
Federal University of the Amazons, Brazil
Federal University of the Amazons, Brazil
* Corresponding author
Federal University of the Amazons, Brazil
Federal University of the Amazons, Brazil
Federal University of the Amazons, Brazil

Article Main Content

With the advent of the so-called 4th Industrial Revolution, personified in the globally commented Industry 4.0, there is a change in progress in manufacturing systems, provided by the development of communication and information technologies, adding an intelligence component in manufacturing plants, through the possibility connectivity and interaction throughout the production chain (intelligent manufacturing systems or cyber-physical systems). However, this new paradigm has an extremely sensitive component, which is the question of the security of the data that is transferred and of the production processes itself. Due to this premise, this article proposed to bring, through a systematic literature review, research about the academic works related to security in these new manufacturing structures (smart manufacturing systems), analyzing which strategies, methodologies, techniques, and technologies have currently used to learn about their vulnerabilities and mitigate possible attacks.

References

  1. Bracho, A., Saygin, C., Wan, H., Lee, Y., & Zarreh, A. (2018). A simulation-based platform for assessing the impact of cyber-threats on smart manufacturing systems. Procedia Manufacturing, 26, 1116-1127. https://www.sciencedirect.com/science/article/pii/S2351978918308242.
     Google Scholar
  2. Carreras Guzman, N. H., Wied, M., Kozine, I., & Lundteigen, M. A. (2020). Conceptualizing the key features of cyber‐physical systems in a multi‐layered representation for safety and security analysis. Systems Engineering, 23(2), 189-210. https://onlinelibrary.wiley.com/doi/full/10.1002/sys.21509.
     Google Scholar
  3. Dakhnovich, A. D., Zegzhda, D. P., & Moskvin, D. A. (2018). Applying garlic routing to guarantee secure collaboration of segments in a digital manufacturing network. Automatic Control and Computer Sciences, 52(8), 1127-1133.
     Google Scholar
  4. Dakhnovich, A. D., Moskvin, D. A., & Zegzhda, D. P. (2020). Approach for Securing Network Communications Modelling Based on Smart Multipath Routing. Nonlinear Phenomena in Complex Systems, 23(4), 386-396.
     Google Scholar
  5. https://www.researchgate.net/profile/Andrei-Dakhnovich/publication/348699164_Approach_for_Securing_Network_Communications_Modelling_Based_on_Smart_Multipath_Routing/links/603ff61f4585154e8c750ec3/Approach-for-Securing-Network-Communications-Modelling-Based-on-Smart-Multipath-Routing.pdf.
     Google Scholar
  6. Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 3928-3937). IEEE. https://www.researchgate.net/profile/Mario-Hermann-2/publication/307864150_Design_Principles_for_Industrie_40_Scenarios_A_Literature_Review/links/57cfd2fb08aed6789701cbeb/Design-Principles-for-Industrie-40-Scenarios-A-Literature-Review.pdf.
     Google Scholar
  7. Horak, T., Strelec, P., Huraj, L., Tanuska, P., Vaclavova, A., & Kebisek, M. (2021). The Vulnerability of the Production Line Using Industrial IoT Systems under DDoS Attack. Electronics, 10(4), 381. https://www.mdpi.com/2079-9292/10/4/381.
     Google Scholar
  8. Huraj, L., Horak, T., Strelek, P. & Tanuska, P. (2021). Mitigation against DDoS Attacks on an IoT-Based Production Line Using Machine Learning. Applied Sciences, 11(4), 1847. https://www.mdpi.com/2076-3417/11/4/1847.
     Google Scholar
  9. Hussain, S. S., Ustun, T. S., & Kalam, A. (2019). A review of IEC 62351 security mechanisms for IEC 61850 message exchanges. IEEE Transactions on Industrial Informatics, 16(9), 5643-5654.
     Google Scholar
  10. Kagermann, H., Lukas, W.D., & Wahlster, W. (2011). Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. VDI Nachrichten, 13(1), 2-3.
     Google Scholar
  11. https://www.dfki.de/fileadmin/user_upload/DFKI/Medien/News_Media/Presse/Presse-Highlights/vdinach2011a13-ind4.0-Internet-Dinge.pdf.
     Google Scholar
  12. Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.
     Google Scholar
  13. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, 51(1), 7-15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.9182&rep=rep1&type=pdf.
     Google Scholar
  14. Kosmowski, K. T., Śliwiński, M., & Piesik, J. (2019). Integrated functional safety and cybersecurity analysis method for smart manufacturing systems. TASK Quarterly, 23(2), 1-31. https://task.gda.pl/files/quart/TQ2019/02/tq223c-b.pdf.
     Google Scholar
  15. Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517. https://research.engineering.uiowa.edu/kusiak/sites/research.engineering.uiowa.edu.kusiak/files/files/IJPR%20Smart%20manufacturing.pdf.pdf.
     Google Scholar
  16. Kühnle, H., & Bayanifar, H. E. S. S. A. M. E. D. I. N. (2017). Smart Manufacturing–Expanding the Systems Approach onto Complex Networks. In 13th International Conference on Industrial Engineering (IIEC 2017), Iran. https://www.sid.ir/FileServer/SE/502e201713117.
     Google Scholar
  17. Leander, B., Čaušević, A., Hansson, H., & Lindström, T. (2020, September). Access Control for Smart Manufacturing Systems. In European Conference on Software Architecture (pp. 463-476). Springer, Cham.
     Google Scholar
  18. Leng, J., Ye, S., Zhou, M., Zhao, J. L., Liu, Q., Guo, W., ... & Fu, L. (2020). Blockchain-secured smart manufacturing in industry 4.0: A survey. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 237-252. https://www.researchgate.net/profile/Jiewu-Leng/publication/346376588_Blockchain-Secured_Smart_Manufacturing_in_Industry_40_A_Survey/links/60d84a29a6fdccb745ea1637/Blockchain-Secured-Smart-Manufacturing-in-Industry-40-A-Survey.pdf.
     Google Scholar
  19. Liu, C., & Jiang, P. (2016). A cyber-physical system architecture in shop floor for intelligent manufacturing. Procedia Cirp, 56, 372-377. https://www.sciencedirect.com/science/article/pii/S2212827116310514.
     Google Scholar
  20. Liu, J., Yuan, C., Lai, Y., & Qin, H. (2020). Protection of sensitive data in industrial Internet based on three-layer local/fog/cloud storage. Security and Communication Networks, 2020. https://www.hindawi.com/journals/scn/2020/2017930/.
     Google Scholar
  21. Lopez, F., Saez, M., Shao, Y., Balta, E., Moyne, J., Mao, M., Barton, K., & Tilbury, D. (2017). Categorization of anomalies in smart manufacturing systems to support the selection of detection mechanisms. IEEE Robotics and Automation Letters, 2(4), 1885-1892. https://par.nsf.gov/servlets/purl/10187486.
     Google Scholar
  22. Lu, Y., Morris, K. C., & Frechette, S. (2016). Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology, NISTIR, 8107, 39. https://manufacturing.report/Resources/Whitepapers/4a36baf0-b3e3-42e8-9757-bbf4f0cd9de2_Current_Standards_Landscape_Smart_Manufacturing_Systems.pdf.
     Google Scholar
  23. Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2019). Smart manufacturing: characteristics, technologies and enabling factors. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5), 1342-1361. https://journals.sagepub.com/doi/pdf/10.1177/0954405417736547.
     Google Scholar
  24. Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia Cirp, 17, 9-13. https://www.sciencedirect.com/science/article/pii/S2212827114003497.
     Google Scholar
  25. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj, 372. https://www.bmj.com/content/372/bmj.n71.abstract.
     Google Scholar
  26. Pliatsios, D., Sarigiannidis, P., Lagkas, T., & Sarigiannidis, A. G. (2020). A survey on SCADA systems: secure protocols, incidents, threats and tactics. IEEE Communications Surveys & Tutorials, 22(3), 1942-1976. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9066892.
     Google Scholar
  27. Protogerou, A., Papadopoulos, S., Drosou, A., Tzovaras, D., & Refanidis, I. (2021). A graph neural network method for distributed anomaly detection in IoT. Evolving Systems, 12(1), 19-36. https://ruomo.lib.uom.gr/bitstream/7000/737/1/Evolving_Systems_postprint.pdf.
     Google Scholar
  28. Qu, Y. J., Ming, X. G., Liu, Z. W., Zhang, X. Y., & Hou, Z. T. (2019). Smart manufacturing systems: state of the art and future trends. The International Journal of Advanced Manufacturing Technology, 103(9), 3751-3768.
     Google Scholar
  29. Schwab, K. (2017). The fourth industrial revolution. Currency. https://d1wqtxts1xzle7.cloudfront.net/52565109/01_The_Fourth_Industrial_Revolution-with-cover-page-v2.pdf?Expires=1637511860&Signature=CZdCEQI~ljEeKdu48UkfcitVYuklSJcPaPAJJhDtKHTluxCift5odvkCeGPZsiOzGssarCbNeq-MtbL-9m6zpzsDGDIe43X2QJ44yG-538DCcT5mtdqovJdyCaFpcSZk94nPlJ381omKyyP3sGnA7urUUSJvi1feAyH34eKlnvSBy9aadiMIBSNv1SVNrGl2bns9D9Z7stf9WG0UT7nD35DB-FEt6cTGdKC6TNtg9DpZq~texZFGEfsDbXByRQ4fP85lNkU-fCtusgHWw-BreAJBgHYh26C3KhJ35PiRG0A9RTuEJ918leDsARNd2qf0owz7trJ1Wn9pCb3ebk2PJg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.
     Google Scholar
  30. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222.
     Google Scholar
  31. Tedeschi, S., Emmanouilidis, C., Mehnen, J., & Roy, R. (2019). A design approach to IoT endpoint security for production machinery monitoring. Sensors, 19(10), 2355. https://josephmahoney.web.illinois.edu/BADM504_Fall%202013/6_Tranfield,%20Denyer%20and%20Smart%20(2003).pdf.
     Google Scholar
  32. Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 47, 93-106. https://www.sciencedirect.com/science/article/pii/S0278612518300463.
     Google Scholar
  33. Tweneboah-Koduah, S., Skouby, K., & Tadayoni, R. (2017). Cyber security threats to IoT applications and service domains. Wireless Personal Communications, 95(1), 169-185. https://www.researchgate.net/profile/Samuel-Tweneboah-Koduah/publication/317283254_Cyber_Security_Threats_to_IoT_Applications_and_Service_Domains/links/5ab50b510f7e9b68ef4be69c/Cyber-Security-Threats-to-IoT-Applications-and-Service-Domains.pdf.
     Google Scholar
  34. Wu, M., Song, J., Sharma, S., Di, J., He, B., Wang, Z., Zhang, J., & Lin, L. W. L. (2020). Development of testbed for cyber-manufacturing security issues. International Journal of Computer Integrated Manufacturing, 33(3), 302-320.
     Google Scholar
  35. Zarreh, A., Wan, H. D., Lee, Y., Saygin, C., & Al Jahani, R. (2019). Cybersecurity Concerns for Total Productive Maintenance in Smart Manufacturing Systems. Procedia Manufacturing, 38, 532-539. https://www.sciencedirect.com/science/article/pii/S2351978920300688.
     Google Scholar
  36. Zheng, P., Wang. H., Sang, Z., Zhang, R. Y., Liu, Y., Liu, C., Mubarok, K., Yu, S., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137-150. https://journal.hep.com.cn/fme/EN/article/downloadArticleFile.do?attachType=PDF&id=21494.
     Google Scholar
  37. Zografopoulos, I., Ospina, J., Liu, X., & Konstantinou, C. (2021). Cyber-physical energy systems security: Threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access, 9, 29775-29818. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9351954.
     Google Scholar