##plugins.themes.bootstrap3.article.main##

This study investigates potential barriers and supporting factors for employees’ Internal Social Media (ISM) usage intention for not only users but also the harder to reach target group of non-users. Following and extending the Decomposed Theory of Planned Behavior (DTPB), it is assumed that ISM acceptance, superiors’ and peers’ support of ISM, superiors’ and peers’ usage of ISM, and the perceived ISM usage ability will explain employees’ usage intention. Multiple regression analyses revealed that users’ and non-users’ usage intention increases mostly with acceptance. Additionally, for users, peer usage support and behavior, as well as ISM Trainings showed to have an impact on usage intention.

Downloads

Download data is not yet available.

References

  1. REFERENCES
     Google Scholar
  2. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control: From Cognition to Behavior (pp. 11-39). New York: Springer Verlag.
     Google Scholar
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T.
     Google Scholar
  4. Alm, J., Schulze, W. D., von Bose, C., & Yan, J. (2019). Appeals to Social Norms and Taxpayer Compliance. Southern Economic Journal, 86(2), 638-666. https://doi.org/10.1002/soej.12374.
     Google Scholar
  5. Benitez, J., Chen, Y., Teo, T. S. H., & Ajamieh, A. (2018). Evolution of the impact of e-business technology on operational competence and firm profitability: A panel data investigation. Information & management, 55(1), 120-130. https://doi.org/10.1016/j.im.2017.08.002.
     Google Scholar
  6. Benitez, J., Llorens, J., & Braojos, J. (2018). How information technology influences opportunity exploration and exploitation firm’s capabilities. Information & management, 55(4), 508-523. https://doi.org/10.1016/j.im.2018.03.001.
     Google Scholar
  7. Carfora, V., Cavallo, C., Caso, D., Del Giudice, T., De Devitiis, B., Viscecchia, R., Nardone, G. & Cicia, G. (2019). Explaining consumer purchase behavior for organic milk: Including trust and green self-identity within the theory of planned behavior. Food Quality and Preference, 76, 1-9. https://doi.org/10.1016/j.foodqual.2019.03.006.
     Google Scholar
  8. Chan, D. K. C., Stenling, A., Yusainy, C., Hikmiah, Z., Ivarsson, A., Hagger, M. S., Rhodes, R.E. & Beauchamp, M. R. (2019). Editor’s Choice: Consistency tendency and the theory of planned behavior: a randomized controlled crossover trial in a physical activity context. Psychology & Health, 35(6) 665-684. https://doi.org/10.1080/08870446.2019.1677904.
     Google Scholar
  9. Cheng, E. W. L. (2019). Choosing between the theory of planned behavior (TPB) and the technology acceptance model (TAM). Educational Technology Research and Development, 67(1), 21-37. https://doi.org/10.1007/s11423-018-9598-6.
     Google Scholar
  10. Chin, P. Y., Evans, N., Liu, C. Z., & Choo, K.-K. R. (2020). Understanding Factors Influencing Employees’ Consumptive and Contributive Use of Enterprise Social Networks. Information Systems Frontiers, 22, 1357-1376. https://doi.org/10.1007/s10796-019-09939-5.
     Google Scholar
  11. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340. https://doi.org/10.2307/249008.
     Google Scholar
  12. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982.
     Google Scholar
  13. El Ouirdi, A., El Ouirdi, M., Segers, J., & Henderickx, E. (2015). Employees' use of social media technologies: a methodological and thematic review. Behaviour & Information Technology, 34(5), 454-464. https://doi.org/10.1080/0144929X.2015.1004647.
     Google Scholar
  14. Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11.
     Google Scholar
  15. Ewing, M., Men, L. R., & O’Neil, J. (2019). Using Social Media to Engage Employees: Insights from Internal Communication Managers. International Journal of Strategic Communication, 13(2), 110-132. https://doi.org/10.1080/1553118X.2019.1575830.
     Google Scholar
  16. Haddud, A., Dugger, J. C., & Gill, P. (2016). Exploring the impact of internal social media usage on employee engagement. Journal of Social Media for Organizations, 3(1), 1-23.
     Google Scholar
  17. Janes, S.H., Patrick, K., & Dotsika, F. (2014). Implementing a social intranet in a professional services environment through Web 2.0 technologies. The Learning Organization, 21(1), 26-47. https://doi.org/10.1108/TLO-11-2012-0068.
     Google Scholar
  18. Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (Second ed.). New York, NY: Guilford Publications.
     Google Scholar
  19. Jacobson, R., Mortensen, C., & Cialdini, R. (2011). Bodies obliged and unbound: Differentiated response tendencies for injunctive and descriptive social norms. Journal of personality and social psychology, 100(3), 433-448. https://doi.org/10.1037/a0021470.
     Google Scholar
  20. Jallow, A. K., Demian, P., Anumba, C. J., & Baldwin, A. N. (2017). An enterprise architecture framework for electronic requirements information management. International journal of information management, 37(5), 455-472.
     Google Scholar
  21. https://doi.org/10.1016/j.ijinfomgt.2017.04.005.
     Google Scholar
  22. Jimmieson, N. L., Peach, M., & White, K. M. (2008). Utilizing the Theory of Planned Behavior to Inform Change Management: An Investigation of Employee Intentions to Support Organizational Change. The Journal of Applied Behavioral Science, 44(2), 237-262. https://doi.org/10.1177/0021886307312773.
     Google Scholar
  23. Kandlousi, N. S. A. E., Ali, A. J., & Abdollahi, A. (2010). Organizational citizenship behavior in concern of communication satisfaction: The role of the formal and informal communication. International Journal of Business and Management, 5(10), 51-61.
     Google Scholar
  24. Karanges, E., Johnston, K., Beatson, A., & Lings, I. (2015). The influence of internal communication on employee engagement: A pilot study. Public Relations Review, 41(1), 129-131. https://doi.org/10.1016/j.pubrev.2014.12.003.
     Google Scholar
  25. Khalili, A., Abbadi, A., & Ismail, M. Y. (2019). Perspective of social media as an organisational KM tool: contemporary literature review. International Journal of Knowledge and Learning, 13(1), 10-24. https://doi.org/10.1504/IJKL.2019.099353.
     Google Scholar
  26. Khatri, I. (2019). Information Technology in Tourism & Hospitality Industry: A Review of Ten Years’ Publications. Journal of Tourism and Hospitality Education, 9, 74-87. https://doi.org/10.3126/jthe.v9i0.23682.
     Google Scholar
  27. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740-755. https://doi.org/10.1016/j.im.2006.05.003.
     Google Scholar
  28. Lebek, B., Uffen, J., Neumann, M., Hohler, B., & Breitner, M. H. (2014). Information security awareness and behavior: a theory-based literature review. Management Research Review, 37(12), 1049-1092. https://doi.org/10.1108/MRR-04-2013-0085.
     Google Scholar
  29. Leidner, D. E., Gonzalez, E., & Koch, H. (2018). An affordance perspective of enterprise social media and organizational socialization. The Journal of Strategic Information Systems, 27(2), 117-138. https://doi.org/10.1016/j.jsis.2018.03.003.
     Google Scholar
  30. Leonardi, P. (2014). Social media, knowledge sharing, and innovation: Toward a theory of communication visibility. Information systems research, 25(4), 796-816. doi:https://doi.org/10.1287/isre.2014.0536.
     Google Scholar
  31. Leonardi, P. (2015). Ambient awareness and knowledge acquisition: using social media to learn ‘who knows what’and ‘who knows whom’. MIS quarterly, 39(4), 747-762. https://www.jstor.org/stable/26628649.
     Google Scholar
  32. Leonardi, P., Huysman, M., & Steinfield, C. (2013). Enterprise Social Media: Definition, History, and Prospects for the Study of Social Technologies in Organizations. Journal of Computer-Mediated Communication, 19(1), 1-19. https://doi.org/10.1111/jcc4.12029.
     Google Scholar
  33. Li, A., Figg, G., & Schüz, B. (2019). Socioeconomic Status and the Prediction of Health Promoting Dietary Behaviours: A Systematic Review and Meta-Analysis Based on the Theory of Planned Behaviour. Applied Psychology: Health and Well-Being, 11(3), 382-406. https://doi.org/10.1111/aphw.12154.
     Google Scholar
  34. Lin, T.-C., & Lin, S. (2019). A tripartite acceptance model for Enterprise 2.0 systems. Quarterly Review of Business Disciplines, 6(1), 59-78.
     Google Scholar
  35. Madsen, V.T. (2018). Participatory communication on internal social media – a dream or reality? Corporate communications: An international journal, 23(4), 614-628. https://doi.org/10.1108/CCIJ-04-2018-0039.
     Google Scholar
  36. Neves, P., & Eisenberger, R. (2012). Management communication and employee performance: The contribution of perceived organizational support. Human Performance, 25(5), 452-464. https://doi.org/10.1080/08959285.2012.721834.
     Google Scholar
  37. Oostervink, N., Agterberg, M., & Huysman, M. (2016). Knowledge Sharing on Enterprise Social Media: Practices to Cope with Institutional Complexity. Journal of Computer-Mediated Communication, 21(2), 156-176. https://doi.org/10.1111/jcc4.12153.
     Google Scholar
  38. Park, H. S., & Smith, S. W. (2007). Distinctiveness and Influence of Subjective Norms, Personal Descriptive and Injunctive Norms, and Societal Descriptive and Injunctive Norms on Behavioral Intent: A Case of Two Behaviors Critical to Organ Donation. Human Communication Research, 33(2), 194-218. https://doi.org/10.1111/j.1468-2958.2007.00296.x.
     Google Scholar
  39. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2011). Sources of Method Bias in Social Science Research and Recommendations on How to Control It. Annual review of psychology, 63(1), 539-569. https://doi.org/10.1146/annurev-psych-120710-100452.
     Google Scholar
  40. Prinsloo, C. (2018). Employees’ Acceptance of E-Newsletters for Organisational Information Transfer. Communication, 44(2), 88-112. https://doi.org/10.1080/02500167.2018.1483959.
     Google Scholar
  41. Regmi, R., Zhang, Z., Khanal, S., Zhang, H., & Kim, J. (2019). An empirical study on user acceptance of ERP system by international students in Chinese HEIs: A TAM approach. International Journal of Higher Education Management, 6(1), 67-82. https://doi.org/10.24052/IJHEM/V06N01/ART-5.
     Google Scholar
  42. Riedl, D., & Betz, F. (2012). Intranet 2.0 Based Knowledge Production: An Exploratory Case Study on Barriers for Social Software. Paper presented at the The fourth international conference on information, process, and knowledge management.
     Google Scholar
  43. Robbins, S. P., & Judge, T. (2018). Essentials of organizational behavior (14 ed.). Edinburgh: Pearson.
     Google Scholar
  44. Schneider, F. M., Aehling, K., Maier, M., & Bacherle, P. (2010). Business-TV wirkt... oder etwa nicht? Ein methodisches Idealfallszenario und empirische Ergebnisse zur Evaluation von Business-TV. In J. Woelke, M. Maurer, & O. Jandura (Eds.), Forschungsmethoden für die Markt- und Organisationskommunikation (pp. 200-220). Köln: Herbert von Halem.
     Google Scholar
  45. Sommestad, T., Karlzén, H., & Hallberg, J. (2019). The Theory of Planned Behavior and Information Security Policy Compliance. Journal of Computer Information Systems, 59(4), 344-353. https://doi.org/10.1080/08874417.2017.1368421.
     Google Scholar
  46. Spector, P. (2019). Do Not Cross Me: Optimizing the Use of Cross-Sectional Designs. Journal of Business and Psychology, 34(2), 125-137. https://doi.org/10.1007/s10869-018-09613-8.
     Google Scholar
  47. Taylor, S., & Todd, P. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176. https://doi.org/10.1287/isre.6.2.144.
     Google Scholar
  48. Treem, J. W. (2015). Social Media as Technologies of Accountability:Explaining Resistance to Implementation Within Organizations. American Behavioral Scientist, 59(1), 53-74. https://doi.org/10.1177/0002764214540506.
     Google Scholar
  49. Urbach, N., & Röglinger, M. (2019). Introduction to Digitalization Cases: How Organizations Rethink Their Business for the Digital Age. In: Urbach N., Röglinger M. (Eds.), Digitalization Cases. Management for Professionals (pp. 1-12). Cham: Springer. https://doi.org/10.1007/978-3-319-95273-4_1.
     Google Scholar
  50. van Vuuren, M., de Jong, M. D., & Seydel, E. R. (2007). Direct and indirect effects of supervisor communication on organizational commitment. Corporate communications: An international journal, 12(2), 116-128. https://doi.org/10.1108/13563280710744801.
     Google Scholar
  51. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x.
     Google Scholar
  52. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540.
     Google Scholar
  53. Werling, K. (2020). Influencing factors for employees’ usage intention of internal social media communication technologies. European Journal of Business and Management Research, 5(2), 1-8. https://doi.org/10.24018/ejbmr.2020.5.2.260.
     Google Scholar
  54. Williams, S. P., Hausmann, V., Hardy, C. A., & Schubert, P. (2013). Enterprise 2.0 Research: Meeting the Challenges of Practice. Paper presented at the Bled eConference.
     Google Scholar