##plugins.themes.bootstrap3.article.main##

The purpose of this study is to determine the factors that influence the continuous intention to use Financial Technology Peer to Peer (P2P) lending services during the Covid-19 pandemic. P2P lending is the provision of financial services to bring together loan recipients and lenders in order to enter into lending and borrowing agreements directly through an electronic system using the internet network in the rupiah currency. The existence of financial technology today will encourage the growth of a cashless society. Banknotes or physical cash are created by utilizing resources in the environment and also the impact of creating banknotes is high and is a risk to the environment. The cashless system is expected to help minimize the environmental impacts of banknote printing waste that can cause climate change. This study is quantitative research using an online survey method. We screened the questionnaire that had been filled by 67 respondents and we choose 55 respondents who met the requirements. We analyzed the data with a structural equation model (SEM) to test the hypotheses, including the relationships of all latent variables. In this study, we use 6 variables perceived usefulness, personal innovativeness, perceived ease of use, social influence, perceived security, and continuous intention to use. The results reveal that perceived ease of use and perceived security have significant influence on continuous intention to use P2P lending services. In addition, personal innovativeness, perceived usefulness and social influence have no significant influence on continuous intention to use P2P lending services.

Downloads

Download data is not yet available.

References

  1. Adilah, I. (2020, June 25). Langkah Perbankan Indonesia untuk Menjawab Tantangan Keberadaan Fintech. https://kumparan.com/imas-adilah/langkah-perbankan-indonesia-untuk-menjawab-tantangan-keberadaan-fintech-1tgBgf2ubzV/1.
     Google Scholar
  2. Agarwal, R. & Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Information Systems Research, 9(2), 204–215. https://doi.org/10.1287/isre.9.2.204.
     Google Scholar
  3. Alghamdi, A., Elbeltagi, I., Elsetouhi, A., & Haddoud, M. (2018). Antecedents of continuance intention of using Internet banking in Saudi Arabia: A new integrated model. Strategic Change, 27(3), 231–243. doi: 10.1002/jsc.2197.
     Google Scholar
  4. Al-Rahmi, W. M. et al. (2019). Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access, vol. 7, 26797–26809. doi: 10.1109/ACCESS.2019.2899368.
     Google Scholar
  5. Bjoern, B., & Juengerkes, E. (2016). FinTechs and Banks – Collaboration is Key Collaborating Makes Sense for Both FinTechs and Banks Different Banks , Different Benefits (S. C. and J. Barberis (ed.)).
     Google Scholar
  6. Cermati. (2019, August 5). Cara Lapor Polisi bila Diteror dan Diancam Pinjaman Online. https://www.cermati.com/artikel/cara-lapor-polisi-bila-diteror-dan-diancam-pinjaman-online.
     Google Scholar
  7. Contreras Pinochet, L. H., Diogo, G. T., Lopes, E. L., Herrero, E., & Bueno, R. L. P. (2019). Propensity of contracting loans services from FinTech’s in Brazil. International Journal of Bank Marketing, 37(5), 1190–1214. https://doi.org/10.1108/IJBM-07-2018-0174.
     Google Scholar
  8. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 19-340. doi: 10.5962/bhl.title.33621.
     Google Scholar
  9. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science., 35(8), 982–1003. doi: 10.1287/mnsc.35.8.982.
     Google Scholar
  10. Duane, A., O’Reilly, P., & Andreev, P. (2014). Realising M-Payments: Modelling consumers’ willingness to M-pay using Smart Phones. Behaviour and Information Technology, 33(4), 318–334. https://doi.org/10.1080/0144929X.2012.745608.
     Google Scholar
  11. Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
     Google Scholar
  12. Hair, J. F. (2010). Multivariate Data Analysis. Seventh Edition. New Jersey: Prentice Hall, Upper Saddle River.
     Google Scholar
  13. Howcroft, B., Hamilton, R., & Hewer, P. (2002). Consumer attitude and the usage and adoption of home-based banking in the United Kingdom. International Journal of Bank Marketing, 20(3), 111–121. https://doi.org/10.1108/02652320210424205.
     Google Scholar
  14. Kato, A., Takada, M., & Hashimoto, H. (2014). Reliability and validity of the Japanese version of the Self-Stigma Scale in patients with type 2 diabetes. Health and Quality of Life Outcomes, 12(1), 1–9. https://doi.org/10.1186/s12955-014-0179-z.
     Google Scholar
  15. Kesharwani, A., & Tripathy, T. (2012). Dimensionality of Perceived Risk and Its Impact on Internet Banking Adoption: An Empirical Investigation. Services Marketing Quarterly, 33(2), 177–193. https://doi.org/10.1080/15332969.2012.662461.
     Google Scholar
  16. Kröner, M. (2017). Best of both worlds: Banken vs. FinTech? Springer Gabler, 27–36. https://doi.org/10.1007/978-3-658-14187-5.
     Google Scholar
  17. Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://doi.org/10.1016/j.bushor.2017.09.003.
     Google Scholar
  18. Li, T. & Chen, Y. (2019). Will virtual reality be a double-edged sword? Exploring the moderation effects of the expected enjoyment of a destination on travel intention. Journal of Destination Marketing Management, 12(101), 15–26. doi: 10.1016/j.jdmm.2019.02.003.
     Google Scholar
  19. López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information and Management, 45(6), 359–364. https://doi.org/10.1016/j.im.2008.05.001.
     Google Scholar
  20. Lu, J., Yao, J. E., & Yu, C. S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. Journal of Strategic Information Systems, 14(3), 245–268. https://doi.org/10.1016/j.jsis.2005.07.003.
     Google Scholar
  21. PameloPay.(2020, September8). Why going cashless is better for the environment. https://www.pomelopay.com/blog/cashless-better-for-environment.
     Google Scholar
  22. Patel, K. J., & Patel, H. J. (2018). Adoption of internet banking services in Gujarat: An extension of TAM with perceived security and social influence. International Journal of Bank Marketing, 36(1), 147–169. https://doi.org/10.1108/IJBM-08-2016-0104.
     Google Scholar
  23. Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research, 14(3), 224–235. https://doi.org/10.1108/10662240410542652.
     Google Scholar
  24. Polatoglu, V. N., & Ekin, S. (2003). An Empirical Investigation of the Determinants of User Acceptance of Internet Banking. Journal of Organizational Computing and Electronic Commerce, 13(2), 123–145. http://hdl.handle.net/10722/43542.
     Google Scholar
  25. Putro, A., & Hendratmoko. (2019). Faktor-Faktor Yang Memengaruhi Individu Dalam Menggunakan Peer To Peer Lending Dan Equity Crowd Funding Di DKI Jakarta. Jurnal Manajemen, 9(1). Indonesia.
     Google Scholar
  26. Ren, C., Deng, Z., Hong, Z., & Zhang, W.(2019). Health information in the digital age: an empirical study of the perceived benefits and costs of seeking and using health information from online sources. Health Information and Libraries Journal, 36(2), 153–167. doi: 10.1111/hir.12250.
     Google Scholar
  27. Salisbury, W. D., Pearson, R. A., Pearson, A. W., & Miller, D. W. (2001). Perceived security and World Wide Web purchase intention. Industrial Management & Data Systems, 101(4), 165–177. https://doi.org/10.1108/02635570110390071.
     Google Scholar
  28. Sathye, M. (1999). Adoption of Internet banking by Australian consumers: an empirical investigation. International Journal of Bank Marketing, 17(7), 324–334. https://doi.org/10.1108/02652329910305689.
     Google Scholar
  29. Shih, Y. Y., & Fang, K. (2004). The use of a decomposed theory of planned behavior to study Internet banking in Taiwan. Internet Research, 14(3), 213–223. https://doi.org/10.1108/10662240410542643.
     Google Scholar
  30. Venkatesh, V., & Davis, F. D. (2000). Theoretical Acceptance Extension Model:Four Longitudinal Field Studies. Management Science, 46(2), 186–204.
     Google Scholar
  31. Viehland, D., Siu, R., & Leong, Y. (2010). Consumer Willingness to Use and Pay for Mobile Payment Services. International Journal of Principles and Appliations of Information Sciences and Technology, 3(1), 35–45.
     Google Scholar
  32. Wang, L. Y. K., Lew, S. L., Lau, S. H., & Leow, M. C. (2019). Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon, 5(6), p. e01788. doi: 10.1016/j.heliyon.2019.e01788.
     Google Scholar
  33. Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: An empirical study. International Journal of Service Industry Management, 14(5). https://doi.org/10.1108/09564230310500192.
     Google Scholar
  34. Yuniarti, V. (2019). Faktor – Faktor Yang Memengaruhi Minat Penggunaan Financial Technology Peer To Peer Lending. Jurnal Ilmiah Mahasiswa Fakultas Ekonomi Dan Bisnis Universitas Brawijaya, 8(1). Indonesia.
     Google Scholar